Chapter 2. बहुपद Ex 2.2
प्रश्न 1.
विभाजन एल्गोरिथ्म का प्रयोग करके, निम्न में p(x) को g(x) से भाग देने पर भागफल तथा शेषफल ज्ञात कीजिए-
(i) p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2
(ii) p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x
(iii) p(x) = x4 – 5x + 6, g(x) = 2 – x2
हल
(i) दिया है, p(x) = x3 – 3x2 + 5x – 3 तथा g(x) = x – 2
माना भागफल q(x) तथा शेषफल r(x) है।
तब, यूक्लिड की विभाजन एल्गोरिथ्म से,
(ii) दिया है, p(x) = x4 – 3x2 + 4x + 5
तथा g(x) = x2 + 1 – x = x2 – x + 1
माना भागफल q(x) तथा शेषफल r(x) है।
तब, यूक्लिड़ की विभाजन एल्गोरिथ्म से,
अत: भागफल q(x) = x2 + x – 3 तथा शेषफल r(x) = 8
(iii) दिया है, p(x) = x4 – 5x + 6 तथा g(x) = 2 – x2 = -x2 + 2
माना भागफल q(x) तथा शेषफल r(x) है।
तब, यूक्लिड की विभाजन एल्गोरिथ्म से,
अतः भागफल q(x) = -x2 – 2 तथा शेषफल r(x) = -5x + 10
प्रश्न 2.
पहले बहुपद से दूसरे बहुपद को भाग करके, जाँच कीजिए कि क्या प्रथम बहुपद द्वितीय बहुपद का एक गुणनखण्ड है-
(i) t2 – 3, 2t4 + 3t3 – 2t2 – 9t – 12
(ii) x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
(iii) x3 – 3x + 1, x5 – 4x3 + x2 + 3x + 1
हल
(i) माना t2 – 3 = g(t) तथा 2t4 + 3t3 – 2t2 – 9t – 12 = p(t)
यदि भागफल q(t) तथा शेषफल r(t) हो
तब, यूक्लिड की विभाजन प्रमेय से,
p(t) = g(t) . q(t) + r(t)
शेषफल r(t) = 0 अत: t2 – 3, 2t4 + 3t3 – 2t2 – 9t – 12 का एक गुणनखण्ड है।
(ii) माना x2 + 3x + 1 = g(x) तथा 3x4 + 5x3 – 7x2 + 2x + 2 = p(x)
यदि भागफल q(x) तथा शेषफल r(x) हो तब यूक्लिड की विभाजन प्रमेय से,
शेषफल r(x) = 0
अत: x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2 का एक गुणनखण्ड है।
(iii) माना x3 – 3x + 1 = g (x) तथा x5 – 4x3 + x2 + 3x + 1 = p(x)
यदि भागफल q(x) तथा शेषफल r(x) हो तब, यूक्लिड की विभाजन प्रमेय से,
शेषफल r(x) = 29x – 9 ≠ 0
अत: x3 – 3x + 1, x5 – 4x3 + x2 + 3x + 1 का गुणनखण्ड नहीं है।
प्रश्न 3.
3x4 + 6x3 – 2x2 – 10x – 5 के अन्य सभी शून्यक ज्ञात कीजिए, यदि इसके दो शून्यक
हल
बहुपद 3x4 + 6x3 – 2x2 – 10x – 5 के दो शून्यक
प्रश्न 4.
यदि x3 – 3x2 + x + 2 को एक बहुपद g(x) से भाग देने पर, भागफल और शेषफल क्रमशः x – 2 और -2x + 4 हैं तो g(x) ज्ञात कीजिए।
हल
बहुपद x3 – 3x2 + x + 2 = p(x), भाजक = g(x)
भागफल q(x) = (x – 2) तथा शेषफल r(x) = -2x + 4
तब, यूक्लिड की विभाजन प्रमेय से,
प्रश्न 5.
बहुपदों p(x), g(x), q(x) और r(x) के ऐसे उदाहरण दीजिए जो विभाजन एल्गोरिथ्म को सन्तुष्ट करते हों तथा
(i) घात p(x) = घात q(x)
(ii) घात q(x) = घात r(x)
(iii) घात r(x) = 0
हल
(i) p(x) व q(x) ऐसे चाहिए कि p(x) की घात = q(x) की घात
तब, p(x) की घात = g(x) की घात . q (x) की घात
⇒ g(x) की घात शून्य होनी चाहिए।
तब, माना p(x) = 2x3 + 5x2 + 7x + 16 और q(x) = x3
g(x) = 2 तथा r(x) = 5x2 + 7x + 16
(ii) घात q(x) = घात r(x)
p(x) = g(x) . q(x) + r(x)
p(x) की घात, g(x) की घात व q(x) की घात के योग के बराबर होना चाहिए।
माना q(x) = ax + b
तथा g(x) = cx2 + dx + e
तब, p(x) घात 3 का व्यंजक होना चाहिए।
p(x) = x3 + x2 + x + 1 तथा g(x) = x2 – 1
⇒ q(x) = (x + 1) तथा r(x) = 2x + 2
अत: p(x) = x3 + x2 + x + 1, q(x) = (x + 1), g(x) = x2 – 1 तथा r(x) = 2x + 2
(iii) घात r(x) = 0
माना p(x) = x3 + 2 तथा g(x) = x2 – x + 1
x3 + 2 में x2 – x + 1 से भाग देने पर,
q(x) = (x + 1) तथा r(x) = 1
अत: p(x) = x3 + 2, q(x) = (x + 1), g(x) = x2 – x + 1 तथा r(x) = 1