Mathematics Solution | Class - X | Chapter - 1. वास्तविक संख्याएँ | Exercise 1.1


Chapter 1 वास्तविक संख्याएँ Ex 1.1

प्रश्न 1.

निम्नलिखित संख्याओं का महत्तम समापवर्तक (H.C.F.) ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए :
(i) 135 और 225
(ii) 196 और 38220
(iii) 867 और 255
हल

(i) दी गई संख्याएँ = 135 और 225
225 > 135
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1 Q1
Step I. दी गई संख्याओं 225 और 135 के लिए यूक्लिड विभाजन प्रमेयिका के प्रयोग से,
225 = (135 × 1) + 90 [∵ शेषफल 90 ≠ 0]
Step II. संख्याओं 135 और 90 के लिए यूक्लिड विभाजन प्रमेयिका के प्रयोग से,
135 = (90 × 1) + 45 [∵ शेषफल 45 ≠ 0]
Step III. संख्याओं 90 और 45 के लिए यूक्लिड विभाजन प्रमेयिका के प्रयोग से,
90 = (45 × 2) + 0 [∵ शेषफल = 0]
शेषफल शून्य है और भाजक = 45
अत: महत्तम समापवर्तक (H.C.F.) = 45

(ii) दी गई संख्याएँ = 196 और 38220
38220 > 196
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1 Q1.1
Step I. दी गई संख्याओं 196 व 38220 के लिए यूक्लिड विभाजन प्रमेयिका से,
38220 = (196 × 195) + 0 [∵ शेषफल = 0]
शेषफल शून्य है और भाजक = 196
अत: महत्तम समापवर्तक (H.C.F.) = 196

(iii) दी गई संख्याएँ = 867 और 255
867 > 255
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1 Q1.2
Step I. दी गई संख्याओं 867 और 255 के लिए यूक्लिड विभाजन प्रमेयिका से,
867 = (255 × 3) + 102 [∵ शेषफल 102 ≠ 0]
Step II. संख्याओं 255 व 102 के लिए यूक्लिड विभाजन प्रमेयिका से,
255 = (102 × 2) + 51 [∵ शेषफल 51 ≠ 0]
Step III. संख्याओं 102 व 51 के लिए यूक्लिड विभाजन प्रमेयिका से,
102 = (51 × 2) + 0 [∵ शेषफल = 0]
शेषफल शून्य है और भाजक = 51
अत: महत्तम समापवर्तक (H.C.F.) = 51


प्रश्न 2.
दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है, जहाँ कोई पूर्णांक है।
हल

माना a एक विषम धन पूर्णांक है जो 6 से बड़ा है
और b एक धन पूर्णांक इस प्रकार है कि b = 6
तब, यूक्लिड की विभाजन प्रमेयिका से,
a = bq + r
a = 6q + r [∵ b = 6]
तब, r का मान 6 से कम होना चाहिए।
तब, r के सम्भव मान = 0, 1, 2, 3, 4, 5
तब, a = 6q + 0
a = 6q + 1
a = 6q + 2
a = 6q + 3
a = 6q + 4
a = 6q + 5
∵ a एक विषम संख्या है; अत: a = 6q + 0, 6q + 2 और 6q + 4 नहीं हो सकते क्योंकि ये राशियाँ 2 से विभाज्य हैं।
तब, विषम संख्या a = 6q + 1 या 6q + 3 या 6q + 5
अत: एक धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होगा।


प्रश्न 3.
किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तम्भों में मार्च करना है। उन स्तम्भों की अधिकतम संख्या क्या है जिसमें वे मार्च कर सकते हैं?
हल

स्तम्भों (lines) की अधिकतम संख्या टुकड़ी के सैनिकों की संख्या 616 और बैंड के सदस्यों की संख्या 32 का महत्तम समापवर्तक होगी।
तब, Step I. 616 और 32 के लिए यूक्लिड की विभाजन प्रमेयिका के प्रयोग से,
616 = (32 × 19) + 8 [∵ शेषफल 8 ≠ 0]
तब, Step II. 32 और 8 के लिए यूक्लिड की विभाजन प्रमेयिका से,
32 = (8 × 4) + 0 [∵ शेषफल = 0]
शेषफल शून्य है और भाजक 8 है।
महत्तम समापवर्तक (H.C.F.) = 8
अतः सेना 8 स्तम्भों में मार्च कर सकती है।


प्रश्न 4.
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि धनात्मक पूर्णाक का वर्ग किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।
हल

माना a तथा b ऐसे दो धन पूर्णांक हैं कि a > b और b = 3
तब, यूक्लिड की विभाजन प्रमेयिका से,
a = 3b + r जबकि 0 ≤ r < 3
तब, के सम्भव मान = 0, 1, 2
तब, a = 3b + 0 ⇒ a = 3b + 1 ⇒ a = 3b + 2
तब, a2 = (3b + 0)2 ⇒ a2 = (3b + 1)2 ⇒ a2 = (3b + 2)2
यदी a2 = (3b + 0)2 तो a2 = 9b2 = 3. (3b2)
यदी a2 = (3b + 1)2 तो a2 = 9b2 + 6b + 1 = 3(3b2 + 2b) + 1
यदी a2 = (3b + 2)2 तो a2 = 9b2 + 12b + 4 = (9b2 + 12b + 3) + 1 = 3(3b2 + 4b + 1) + 1
a2 के सभी विस्तारों से स्पष्ट है कि a2, 3 से विभाजित होता है और शेषफल शून्य बचता है या 1 बचता है।
a2 = 3m + 0 ⇒ a2 = 3m + 1
अतः किसी धन पूर्णांक का वर्ग किसी पूर्णांकm के लिए 3m या 3m + 1 के रूप का होता है।


प्रश्न 5.
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।
हल

माना a तथा b दो ऐसे धन पूर्णांक हैं कि a > b और b = 9
तब, यूक्लिड की विभाजन प्रमेयिका से, a = 9b + r
तब, r का मान 9 से कम होना चाहिए।
तब, r के सम्भव मान = 0, 1, 2, 3, 4, 5, 6, 7, 8
तब, a = 9b + 0
a = 9b + 1
a = 9b + 2
a = 9b + 3
a = 9b + 4
a = 9b + 5
a = 9b + 6
a = 9b + 7
a = 9b + 8
जब a = 9b + 0 हो तो a3 = (3b + 0)3 = 27b3 ⇒ a3 = 9(3b3) ……..(1)
जब a = 9b + 1 हो तो a3 = (3b + 1)3
⇒ a3 = (3b)3 + 3.3b.1 (3b + 1) + (1)3
⇒ a3 = (27b3 + 27b2 + 9b) + 1
⇒ a3 = 9[3b3 + 3b2 + b] + 1 …….. (2)
जब a = 9b + 2 हो तो a3 = (3b + 2)3
⇒ a3 = (3b)3 + 3.3b.2 (3b + 2) + (2)3
⇒ a3 = [27b3 + 54b2 + 36b] + 8
⇒ a3 = [27b3 + 18b (3b + 2)] + 8
⇒ a3 = 9[3b3 + 6b2 + 4b] + 8 ……. (3)
तब, समीकरण (1), (2) व (3) को ध्यान से देखिए कि ये 9 से विभाज्य हैं।
तब, इन्हें क्रमश: a3 = 9m,
या a3 = 9m + 1,
या a3 = 9m + 8 लिखा जा सकता है।
अत: किसी धन पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.